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Abstract. Solution of the inverse problem to estimate the vector mag-
netic field distribution on the sun from the profiles of the Stokes param-
eters of polarised light in magnetically sensitive spectral lines is a vital
task in our understanding of solar activity. Recently machine learning
techniques such as principal component analysis and neural networks
have led to the development of real time inversion computer codes. This
paper is the latest contribution from the Australian-American-French
Connection, an international team playing an active role in this Stokes
inversion revolution. A new inversion method called Multiple Support
Vector Regression is described and applied here for the first time to syn-
thetic Stokes profile data.

1 Introduction

The magnetic field that permeates the external layers of the sun plays a funda-
mental role in solar activity. Estimation of the magnetic field distribution near
the solar surface is done indirectly using spectropolarimetry, i.e. measurement
of the wavelength dependence of the Stokes parameters (or Stokes profiles) of
polarised radiation in magnetically sensitive spectral lines. The solution of the
inverse problem to infer the vector magnetic field from Stokes profile data is
known as Stokes inversion (Socas-Navarro [1]). Modern spectropolarimeters pro-
vide accurate measurements of the Stokes profiles of many different spectral
lines formed at various atmospheric heights. Future space- and ground-based
instruments, such as Solar-B and SOLIS, will achieve unprecedented spatial res-
olution and coverage of the solar surface. The expected flood of data from such
instruments has recently been the catalyst for the development of several new
approaches to Stokes inversion based on machine learning, aimed at real time
data analysis.
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Initial steps towards real time inversion were made by Rees et al [2][3] who
proposed a database search method using principal component analysis (PCA).
Socas-Navarro et al [4] and Lépez Ariste et al [5] showed that so-called PCA
inversion is over two orders of magnitude faster than traditional nonlinear least
squares model fitting (Auer et al [6]). Essentially real time inversion has been
achieved using neural networks (Carroll and Staude [7]; Lépez Ariste et al [5];
Socas-Navarro [8]). In parallel with this PCA and neural network research we
have been investigating an alternative approach which we call multiple support
vector regression (MSVR) (Rees and Guo [9]). This is the focus of the current
paper.

The rest of the paper is structured as follows. Section 2 summarises the
MSVR method and Section 3 illustrates its application to synthetic unpolarised
intensity profile data. Section 4 presents the first application of MSVR to syn-
thetic Stokes profile data. We conclude in Section 5, setting the research agenda
for the next stage of development of MSVR.

2 Multiple Support Vector Regression

In many applications support vector machines (SVMs) (Vapnik [10]) have been
shown to outperform neural networks when applied to classification problems.
SVMs have also been used for nonlinear regression. This is known as support
vector regression (SVR). Cristianini and Shawe-Taylor [11] provide an excellent
introduction to both SVMs and SVR. In this section we show how SVR can be
used for parameter estimation. Since in general there are multiple parameters
involved, we refer to this new method of inversion as multiple SVR or MSVR
(Rees and Guo [9]).

In brief the inversion problem can be formulated as follows. Suppose we
measure an N dimensional signal S = (51, ..., Sy) and associate with this signal
a set of parameters p = (pi,p2,...). Thinking of S as an operator (generally
nonlinear) on p, the goal is to find the inverse operator F such that

p =3(S(p)) (1)

To approximate F we use a training set of signals S; = S(p;),j = 1,..., M
corresponding to M different parameter sets p;. In many cases N is large and
it is advantageous to reduce dimensionality by PCA, reconstructing S using
eigenvectors estimated from this training set(Rees et al [2][3]). Then instead of
S we can work with the vector E = (ey,...,ey) of eigenfeatures or principal
components, where n < N, and the inversion problem can be recast as finding
JF such that

p = F(E(p)) (2)
For a model with L physical parameters each eigenfeature vector E; in the
training set has an associated parameter set p; = (ps1,- -, Pik," -+, Pir). In order

to estimate a particular parameter py, we organise the M training examples as
(Elyplk)y ) (Eizpik)z Ty (EMprk)y regarding El as il'lpllt vectors and Dix as
the associated output values for application of the SVR algorithm.



The goal of SVR is to find a function fi(E) such that
|fk:(Ej)_pjk|§5; fOI‘jzl,...,]\l7 (3)

where € > 0. Thus the function value fi(E;) has at most e deviation from the
actually obtained targets pj;; for all the training data, and at the same time, is
as smooth as possible. The SVR function has the form:

M
fe(B) = ain Ki(Bi, E) + by. (4)

i=1

where o, and by are constants, and K, is the kernel function. The index k em-
phasises that one is free to choose different kernel functions for different system
parameters.

For some cases linear SVR may be sufficient, but in general nonlinear SVR
is desired. In the latter case a number of kernel functions have been found to
provide good performance, including polynomials, radial basis functions (RBF),
and sigmoid functions. The SVR optimisation problem is then solved in accor-
dance with standard techniques (see, for example, Cristianini and Shawe-Taylor
[11]).

The regression functions py = fi(E), for k = 1,..., L, learned by this process,
constitute the inverse operator F in equation (2).

3 Application to Unpolarised Spectra

We now illustrate the method using synthetic unpolarised intensity profiles mod-

elled analytically by
1

— 5
T T e/ (5)

where z is a dimensionless wavelength measured from line centre. This model
has two adjustable parameters: o which is the line to continuum opacity ratio
at line centre and § which controls the line broadening. In terms of the previous
notation, p = (1o, ) and S is composed of values of I sampled at N values of
the wavelength z. The goal is to find the regression functions ny = fp, (E) and
6 = fs(E).

I=1

3.1 One Parameter Case

Fixing d = 1, we generated a training set of M = 19 profiles using the opacity
values o = 1: (0.5) : 10, i.e. from 1 to 10 in steps of 0.5. The profiles were com-
puted at N = 61 wavelengths z = —3: (0.1) : 3 and just two eigenfeatures, i.e. a
2—-dimensional eigenfeature vector E = (e, e3) was used. The training data were
fitted with a polynomial kernel. One result of the fitting is automatic selection
of the number of support vectors required for the SVR function. In this case
there are 7 support vectors. The SVR function is a smooth interpolating func-
tion which can be used for accurate parameter estimation for any eigenfeature



vector, not just those in the training set. The training set and the SVR function
(a smooth interpolating curve) are shown in Figure 1.

Synthetic test data were generated for a large number of values of ny. These
test data were used as“observations” and the parameter values estimated with
the SVR function. The errors in these estimated 1y were found to be less than
1% for all test data.

Mo

Fig. 1. Unpolarised training data (*) and SVR function 1o = fy, (E) (continuous curve)
for case of fixed § = 1.

3.2 Two Parameter Case

Here we allow both parameters to vary, generating a training set of M = 121
profiles for no = 1:(0.9) : 10 and § = 0.5 : (0.1) : 1.5 for N = 81 wavelengths
x = —4:(0.1) : 4. We used a 3—dimensional eigenfeature vector E = (ey, €2, €3)
and fitted the regression functions with an RBF kernel.

The number of support vectors defining the regression functions f,,(E) and
d = f5(E) were 83 and 72 respectively. The training data and the regression
functions (smooth interpolating surfaces) viewed as functions of e; and e are
shown in Figure 2.

Synthetic test data were again generated for a large number of parameter
values and the regression functions were used to estimate the parameters from
these “observations”. The errors in these estimates were found to be less than
1.3% for no and less than 0.3% for ¢ for all test data.



Fig. 2. Unpolarised SVRs (smooth interpolating surfaces) 1o = fy, (E) (left) and § =
fs(E) (right). The level curves are defined by the training data

4 Application to Polarised Spectra

We now apply MSVR to invert Stokes profiles. For simplicity we consider only
the spectral profiles of intensity I and net circular polarisation V. A training set
of M = 399 synthetic I and V profiles sampled at 100 wavelengths was generated
for a magnetically sensitive spectral line of neutral iron by solving the equations
of polarised radiative transfer in a model of the solar photosphere for a range
of magnetic field strengths B = 0 : (100) : 2000 G (Gauss), and inclinations
v =0:(5) : 90 degrees to the line of sight; the field azimuth was not varied.
Thus in this model the parameter vector is p = (B,+) and the signal vector is a
200-dimensional concatenation of the I and V profiles, which, on applying PCA
separately to I and V and retaining only the first two eigenfeatures for each,
leads to a composite 4-dimensional eigenfeature vector, E = (e1,ea,e3,€4).

The goal is to estimate the SVR functions B = fg(E) and v = f, (E). We fit-
ted the regression functions with an RBF kernel. The number of support vectors
varied depending on selection of certain fitting criteria in the SVR algorithm,
but averaged about 80. Here we present only the results for fg(E). Training
data and regression function (smooth interpolating surface) are shown in Figure
3 as functions of e; and es.

As in the unpolarised case synthetic test data were generated and used as
“observations”. The absolute errors in the estimates of B from these data, viewed
as an error surface in Figure 4, were less than 10G, well under the errors typically
found in analysis of real observational data.

5 Conclusion

To our knowledge MSVR inversion, as formulated in this paper, is completely
novel. It is a generic technique which should be widely applicable to inverse
problems in science, medicine, and engineering. Given that the method provides
explicit functional representations of model parameters, as does nonlinear regres-
sion by a neural network, MSVR is a new option for real time data processing.



Fig. 3. Polarised training data viewed as a dark mesh superposed on SVR function
B = fp(E) (smooth interpolating surface) for magnetic field strength.

Our very preliminary tests indicate that MSVR will indeed work for Stokes
inversion, but much more detailed research and testing are required before MSVR,
could be said to be a viable alternative to neural network inversion. Issues to be
addressed include how best to form the composite signal and associated eigen-
feature vectors, especially when all four Stokes profiles are involved, i.e. linear
as well as circular polarisation are treated simultaneously.

Neural network inversion is currently emerging as the method of choice for
on-board real time data processing, for example on the Helioseismic Magnetic
Imager (HMI) experiment on the Solar Dynamics Observatory mission to be
launched in 2007. It is worth noting here that HMI is a filtergraph instrument
and samples the Stokes spectra at only a small number of wavelengths. Graham
et al [12] showed that even with such limited wavelength coverage it is possible
to obtain reliable vector magnetic field estimates by traditional inversion using
nonlinear least squares model fitting. Obviously in this case the signal data
already is low dimensional and the PCA compression step discussed in this paper
is not necessary. It will be interesting to investigate the application of MSVR to
such data.
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